Solvability of Systems of Two Polynomial Equations over Finite Fields

نویسنده

  • FRANCIS N. CASTRO
چکیده

In this paper we determine the solvability of families of systems of two polynomial equations over finite fields by computing the exact divisibility of the exponential sums associated to the systems. This generalizes a theorem of Carlitz to systems of two equations. Our result gives an upper bound for the Waring number of systems of diagonal equations. Also, as a by-product, we also obtain information about the p-divisibility of the number of solutions of the systems for cases for which the well known results of Chevalley-Warning and Katz do not give any information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

On the Solvability of Systems of Bilinear Equations in Finite Fields

can be solved with a ∈ A, b ∈ B, c ∈ C and d ∈ D. Gyarmati and Sárközy [3] generalized the results on the solvability of equation (1.1) to finite fields. They also study the solvability of other (higher degree) algebraic equations with solutions restricted to “large” subsets of Fq, where Fq denote the finite field of q elements. Using exponential sums, Hart and Iosevich [5] studied similar prob...

متن کامل

Solvability of Systems of Polynomial Equations over Finite Algebras

We study the algorithmic complexity of determining whether a system of polynomial equations over a finite algebra admits a solution. We prove that the problem has a dichotomy in the class of finite groupoids with an identity element. By developing the underlying idea further, we present a dichotomy theorem in the class of finite algebras that admit a non-trivial idempotent Maltsev condition. Th...

متن کامل

Definability of linear equation systems over groups and rings

Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixedpoint ...

متن کامل

Rank Logic is Dead, Long Live Rank Logic!

Motivated by the search for a logic for polynomial time, we study rank logic (FPR) which extends fixed-point logic with counting (FPC) by operators that determine the rank of matrices over finite fields. While FPR can express most of the known queries that separate FPC from Ptime, nearly nothing was known about the limitations of its expressive power. In our first main result we show that the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009